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X-ray diffraction patterns from a polycrystalline material or a small distorted crystal do not always 
contain enough information for the determination of the (average) geometry and the degree of distor- 
tion of the crystal(s). To avoid the consequent difficulties in the interpretation of diffraction patterns 
from such small distorted crystals the author introduces for the material the average lattice function ~(x), 
that is, a repartition function. When the diffraction spots from the material can be measured separately, 
the ~(x) function belonging to that material has certain special properties. For that case the average 
coherently scattering region can be defined in terms of ~(x). 

It is shown that the intensity distribution in such a diffraction spot can be described with the aid of 
the product of C(x) and ~0(x, Ax), where C(x) is the average form function of the coherently scattering 
r e g i o n s ,  ~ ( X r n , A X ) ,  the special value of ~0(x,Ax), is one peak of the quasiperiodic function ~(x) around 
the ruth lattice point, Xm, of the average lattice. The vector x represents the distance between two arbitrary 
unit cells in the structure; Ax= x-x,~.  Consequently the line profiles in a powder diffraction pattern can 
be described with the aid of C(t). ¢(tm, L), the product of the projections of C(x) and ~0(xm,Ax) on 
the perpendicular to the reflecting planes; L, t and tm are the projections of Ax, x and xm respectively. 
It is shown that the condition ~O(tm, L)= 0 for ILl >_ ½d (d is the interplanar spacing) holds when the dif- 
fraction lines can be measured separately. A criterion for the applicability of the Warren-Averbach 
method is given. 

Introduction 

The geometry and degree of distortion of a small 
distorted crystal are often expressed by the form func- 
tion V(x) and the average strain coefficients ([Axm[2). 
The form function V(x) is the fraction of the crystal 
volume common to the crystal and its ghost which is 
displaced by x with respect to the crystal. 

The strain coefficients are defined by comparing the 
distorted crystal with an undistorted one and consid- 
ering the positions of two unit cells A and B with 
respect to each other. Unit cell B is at a distance Xm 
from A in the undistorted crystal; cell B is at Xm + Axn 
from A in the distorted one. The strain coefficients, 
([AxmlZ), are given as the mean square values of the 
shift Axn for all pairs of unit cells A and B at a dis- 
tance displaced Xm from each other. 

The definitions of both (]Axm] 2) and V(x) lead to 
difficulties in the interpretation of X-ray diffraction 
patterns from strongly distorted crystals: the diffrac- 
tion pattern does not contain enough information for 
their determination. 

Let us consider a crystal with bent atom rows, as 
in Fig. 1. When a region (a) is in the right position to 
scatter a parallel monochromatic X-ray beam, region 
(b) will not be oriented so as to scatter the same beam. 
Region (a) is called the coherently scattering region. It 
is difficult to determine the positions of the boundaries 
of the coherently scattering region but certainly X-ray 
diffraction cannot give information about the form 
function of the whole crystal when the distortions are 

too large: it can only give information about the co- 
herently scattering region (a). 

Likewise it is impossible to determine ([Axm[ 2) unam- 
biguously from diffraction measurements. To explain 
this we consider the contribution to the X-ray diffraction 
intensity from two unit cells B and B' that have the fol- 
lowing special positions with respect to a given unit cell 
A. In the undistorted crystal the position of B with re- 
spect to A is xm; unit cell B' is at xm + nlel + n2e2 + u3e3 
from A in the undistorted crystal (e~ are the primitive 
translation vectors and n~ are integers, i =  1,2,3). In the 
distorted crystal B is shifted by Axn, and B' by A x n -  
(nlel + n2e2 + n3e3) with respect to A. Of course the posi- 
tions of B and B' are identical in the distorted crystal and 
so their contributions to the diffraction intensity are 
equal. However, B and B' give different contributions 
to the strain coefficient, defined as above. Thus the 
determination of the strain coefficients from X-ray 
diffraction is ambiguous; the diffraction pattern does 
not contain enough information for their determina- 
tion, especially when the distortions are too large. 

In fact both the problems described above have the 
same origin: the size of the coherently scattering re- 
gion determines the strain coefficients found and the 
degree of distortion determines the size of the coherent- 
ly scattering region. We shall show in this paper that 
the above problems can be avoided by use of the aver- 
rage lattice function, ~(x) ,  well known in liquid dif- 
fraction and frequently used by Hosemann & Bagchi 
(1962) to explain the paracrystalline state; ~(x)  is de- 
fined below. 
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Defirtition of ~(x) 
The average lattice function ~(x) for a distorted 

crystalline structure is the probability density of finding 
the centre of a unit cell at a displacement x from the 
centre of another arbitrary unit cell in the structure. 

In principle ~(x) can always be determined from a 
complete diffraction pattern; however, it is impossible 
to measure the whole pattern and it is in addition im- 
practicable to measure it in three dimensions. In this 
paper it will be shown, therefore, that ~(x) has special 
properties when the diffraction pattern is made up of 
discrete spots. In this case the equation that describes 
the intensity distribution of the individual spots can 
be solved in order to get information about the form 
function C(x) of the average coherently scattering re- 
gion and about the average distribution of atoms 
around the lattice points. The quantities V(x) and 
([Axml2), usually found from line-profile analysis, are 
no longer meaningful as defined above but appear as 
characteristics of ~(x). 

Derivation of the equations and definition of the 
coherently scattering region 

In the following, derivations are given for the diffrac- 
tion intensity distribution from crystals containing no 
stacking faults and consisting of a number of identical 
unit cells having approximately the same orientation. 
The structure factor F(s) of such a structure is 

F(s) =f(s) Z' exp (2zcis. Ur), (1) 
r 

where f(s) is the structure factor of one unit cell; s is 
the reciprocal space coordinate and Ur is the position 
of the centre of a unit cell. The sum is taken over all 
unit cells in the structure. (Unless stated otherwise the 
summations in the following are taken over all unit 
cells in the structure.) 

The general formula for the intensity distribution of 
the diffraction pattern from this structure is 

The relationship (5) means that /Ixn in equation (4) is 
the difference between uv-Uq and the nearest lattice 
point xm. 

We call P'(xm,/Ixn) the number of unit cells that are 
displaced by Axn with respect to a unit cell at a distance 
Xm in a corresponding undistorted crystal. From equa- 
tions (2), (3) and (4) the intensity distribution I(s) can 
be written, with the aid of the function P'(xm,/Ixn): 

I(s) =f2(s) S {X P'(xm, Axn) exp (21ris. Axn)} 
m n 

xexp (2rcis. xm), (6) 

where n and m are independent, indices. The sums in 
equation (6) are taken over all n, including all /Ixn 
values that occur in the structure, and over all Xra 
values for the structure. 

If the number of unit cells in the structure is suffi- 
ciently large we can apply the continuous representa- 
tion of equation (6): 

I(s)= Nf2(s) oo m X exp (2zcis. x) 

l ~ ' ( x , / I x ) e x p  (21ris./Ix)d/Ix, (7) × g(Xm- x) dx 
d ~  

where g(Xm-X) is the Dirac function; N is the total 
number of unit cells. The function ~'(x, Ax) is a contin- 
uous distribution function for the shift/Ix that corre- 
sponds to the discontinuous function P'(xm,/Ixn). The 
function 4~'(x,/Ix) varies continuously not only with 
/Ix, but also with x. However it only has real signifi- 
cance for the lattice when x = Xm. Then: 

• '(x,/Ix) = ~(xm,/ix). (s) 
Thus 4~'(x, Ax) is defined as a function that has the 
value ~(xm,/Ix) for x = Xm. Since we have chosen/Ixn 
in such a way that it is the distance from the centre of a 
unit cell to the nearest lattice point Xm, we can write 

/ ( s )  = e ( s ) * r ( s )  

=.f2(s) X exp (-2zcis. uq) X exp (2zcis. uv) 
q P 

=f2(s) X exp (2zcis. uv-Uq) .  (2) 
P,q 

In equation (2) u v - u q  is the position of unit cell p 
relative to unit cell q. With the aid of the primitive 
translation vectors e~ we can express Xm as 

xm = nlel + n2e2 + n3e3, (3) 

where nl, n2, n3 are integers. The points Xm define the so 
called average lattice. We can fix the position of unit 
cell p relative to unit cell q unambiguously: 

uv-uq=xm+dxn=x,  (4) 

if we include the restriction: 

I(Ax~. e01 < ½1e412, (i= 1, 2 or 3). (5) 

/ / 
/ /  

x ~  L 2 . /  

Fig. 1. Diagrammatic representation of a crystal with bent 
rows of atoms. When region a is in the right position for 
scattering, region b is oriented so that it does not scatter. 



P. L. G. M. LA F L E U R  645 

for the distribution function of the displacement: 

q~(xm, Ax)=0 for I(Ax. e01>½le~l z, (i=1, 2 or 3) (9) 

The average lattice function ~(x) has already been de- 
fined in the introduction. It can be expressed in terms 
of gS(Xm, Ax) by the relation" 

~ ( x ) =  L" g~(Xm,X-Xm). (10) 
m 

Of course it is always possible to express ~(x) uniquely 
in the Fourier transform of the complete diffraction 
pattern I(s). It is impossible, however, to measure the 
complete I(s) pattern. 

When the diffraction pattern can be separated into 
single broadened spots around the lattice points sn in 
reciprocal space, or into single diffraction lines, we can 
get some information about ~(x) by measuring part 
of I(s). For such cases l(s) can be written as 

l(s) = S In(s - Sn). (11) 
n 

' I-T-I-T-T-T-T-T-I-T- T 
!dj t 
p .-1 

Fig.2. Integral values of the average lattice function, g~(t), for 
an infinite, perfect, one-dimensional crystal. 

tm:!m - - T - T - T -  - T T-v--_ . 
t 

Fig. 3. Integral values of the average lattice function, ~(t), for 
a finite one-dimensional crystal. 

~ [ t l  I 
I 

I I 

Fig.4. The average lattice function, ~'(t), for a collection of 
slightly distorted one-dimensional finite crystals. The 
(shaded) area under one peak equals V(t). 

In(s-sn)  are the intensity distributions of the discrete 
diffraction spots. Equation (11) is meaningful when 
the crystal corresponds to a function ~(x) that satisfies 
certain conditions, which we shall give later. Conversely 
it can be shown that these conditions for ~(x) hold 
when the intensity distributions can be measured 
separately. To explain these properties of ~(x) we give 
the characteristics of ~(x) for some idealized cases of 
one-dimensional crystals. The three-dimensional ana- 
logue of the last example is the particular ~(x)-function 
that corresponds to crystals giving separable diffrac- 
tion spots. 

Example 1. An infinite perfect crystal 
It is clear that gz(t) is a 5-function: 

~@(t) = • 5( t - t in) .  (12) 
m 

In Fig.2 the integral values of ~( t )  are given" 

i tm+a gz(t) dt = 1 for t = tm and A-+0 
tm--zt 

= 0 for t ¢= tm and A---~0. (13) 

t is the one-dimensional lattice coordinate; tm is the 
ruth lattice point. When d is the net plane-distance, 
tin=din; m = 0 , 1 , 2 , . . . .  

Example 2. A finite perfect crystal 
When the crystal is finite, the probability of finding 

the centre of a unit cell at a distance t from another 
such centre is equal to the form function V(tm). When 
we look for the integral values of ~( t )  we get, there- 
fore: 

i tm+½d~(t)dt= V(tra) . (14) 
tra--½d 

V(tm) is the form function of the crystal for t = tin. The 
integral values of ~( t )  are given in Fig. 3. 

Example 3. Collection of  slightly distorted finite crystals 
of different size 

For this case we can give a direct representation of 
g~(t); this consists of a collection of peaks around the 
lattice points t = tin. If we call one single peak fo(tra, L) 
and if the distortions are so small that ~O(tm, L)= 0 for 
ILl _>½d, we can express ~( t )  by the equation 

~ ( t ) =  A7 V(tm) . (p(tm, t - t m )  , (15) 
m 

where L = t - t i n .  Here V(t) is the average form func- 
tion for the group of crystals. We have to take nor- 
malized functions for ~o(tm, L) in order to obtain the 
expression 

ftm+½d~i~(t)dt= I +½d V(tm) . (p(tm, L)dL= V(tm) 
tm--½d d--½d 

(16) 

(see Fig. 4). 

A C 2 5 A  - 1" 
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Example 4. Collection of slightly distorted finite crystals 
in a 'perfectly distorted' matrix 

In example 3 a ~(t)-function was discussed that does 
not correspond to a polycrystalline material. In that 
example G'(t) is zero if t is larger than the crystals. In 
a polycrystaUine material without clustering, however, 
the probability of finding the centre of a unit cell at a 
distance t from the centre of another is equal to 1/v, 
when t is larger than the crystals (v is the volume of one 
unit cell.) Thus ~@(t) is a constant for large t; this may 
be called 'perfect distortion'. 

The perfectly distorted surroundings of the crystals 
are built up of unit cells identical with those of the 
crystals. Since we assume the absence of clustering in 
the polycrystalline material we can write 

~ ( t ) =  Z V(tm) q~ (tm, t- tm)+(1/v) {1 -  V(t)) . (17) 
m 

> 1  Again ~O(tm, t - tm)=O for [t- tml_2d.  The term 
(l/v) { 1 -  V(t)} describes the contribution to ~( t )  from 
the perfectly distorted surroundings of the crystals. 
The graphical representation of ~( t )  consists of peaks 
as in Fig. 4, superposed on the monotonically changing 
curve ( l / v ) ( 1 - V ( t ) )  (see Fig.5). Since V(t) in the 
interval tm-½d< t <tm + ½d may be approximated to 
a straight line, it can be shown that 

Itm+½a~(t)dt=l (18) 
tm--½d 

as a consequence of the absence of clustering. The 
above example gives, apart from one-dimensionality, 
a more realistic ~( t )  function for a distorted poly- 
crystalline material. 

Example 5. A strongly distorted finite crystal in a 'per- 
fectly distorted' matrix 

It is possible to deduce the graphical representation 
of ~( t )  for this case from the former example: since 
the distortions are stronger than in example 4, the 
peaks from Fig. 5 are broadened and begin to overlap 

each other for certain values of t. r@(t) still consists of 
peaks superposed upon a monotonically changing 
function. Let us call the monotonic function 
(I/v) { 1 -  C(t)}; the function C(t) is analogous to V(t). 
The function (I/v) { 1 -  C(t)} passes through the mini- 
ma of ~( t )  so this choice leaves some ambiguity in 
C(t), but for most cases C(t) will change slowly with 
respect to the quasiperiodic function r@(t); we will 
restrict ourselves to these cases so the ambiguity in 
C(t) is then only small. 

If we again describe the peaks of ~( t )  in terms of 
~O(tm, L), the condition (0(tin, L )=0  for ILl>_½d still 
holds, to a good approximation, if the shape of 
qg(tm, L) varies slowly with tin. We will further restrict 
ourselves to these cases. It is possible to formulate 
~( t )  for the above assumptions with 

~ ( t ) =  Z" C(tm)(O(tra, t- tm)+(1/v) { 1 - C ( t ) } .  (19) 
171 

~O(tm, t-t in) are normalized functions and by formula 
(19) the normalization condition still holds. Formally 
equations (17) and (19) are identical and since ~( t )  
determines the diffraction pattern uniquely, it is im- 
possible to distinguish, by diffraction measurements, a 
large strongly distorted crystal from a small distorted 
crystal in a perfectly distorted matrix. This is the es- 
sence of the problems quoted in the introduction. 

Since C(t) is a slowly varying function of t and since 
the right hand sides of equation (19) and the one- 
dimensional analogue of (10), 

~ ( t ) =  Z ~(tm, t - t m ) ,  (20) 
m 

have to be identical, we may write 

~(tm, t -  t,O= C(tm)qg(tm, t -  tin) + (1/v) ( 1 - C(tm)}. (21) 

We now leave the one-dimensional examples and 
rewrite (21) for the analogous three-dimensional case: 

~(xm, Ax)=C(xm)~O(xm, Ax)+(1/v) {1 -- C(xm)) (22) 

I I i 

L ' K ~ !  I i I ~ I I 
~ \ N  ! i i I I i i i 

tm 

Fig. 5. The average lattice function for the same case as in Fig. 4. The crystals are now located in a completely distorted matrix 
of the same density as that of the crystals. The dotted line on which the peaks are superposed is {(1 - V(t)]} (l/d). The area 
under one peak is V(t). The total area under ~(t) around one lattice node is 1 (shaded). 
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with the condition 

~0(xm, Ax) =0 for ](Ax. e4)] >½[e4[ 2, (i=1,2 or 3). (23) 

C(xm) and the shape of 9(xm, Ax) vary slowly with 
Xm. By substitution of equation (22) into equation (10) 
we get the ~(x) function with the required properties, 
corresponding to crystals that give separable diffrac- 
tion spots. To show this, we write for ¢(xm, Ax): 

¢(xm, Ax)= C'(xm)~O'(xm, Ax) + (1/v) {1-C'(xm).  (24) 

The conditions from example 5 are not imposed upon 
~0'(Xm, Ax) and C'(xm). However, we take C'(x) to be a 
monotonic function of x, such that ~0'(xm, Ax) is as 
small as possible for [(Ax. ei)[ =½]ca[ 2. We then get for 
the diffraction intensity distribution from any struc- 
ture: 

I(s)= NfZ(s) f~ooexp (2~is . x) 

xZ' 3(Xm-X)dxl°f_ C'(x)c?'(x, Ax) 
r r l  o o  

x exp (2zcis. Ax)d(Ax)+ (NfZ(s)/v} 

x exp (2re is. x) Z O(Xra- x)dx U(Ax) 
- o o  m oo 

× { 1 - C ' ( x ) }  exp (2zc is .  Ax)d(Zx)=-Ia(S)+Ib(s). (25) 

U(Ax) is the form factor of one translation unit cell; 

g(Ax)= 1 for I(Ax. e4)l _<½levi 2, (i= 1,2 or 3) 
=0 for I(Ax. e4)l>½1e412, q= l ,2  or 3). (26) 

We consider the first term in equation (25), Ia(s). If 
we put 

A(s,x)= f ~ C'(x)rp'(x, Ax) exp (2rcis. Ax)d(Ax) (27) 
d - -  o o  

then we can write 

Ia(s) = Nf2(s)l~_oo m S A(s,x)O(Xm-x)exp (2rcis. x)dx 

=NfZ(s) I~_oo A(s,x) exp (2rcis. x)dx. 

ex. x) x 

= Nf2(s) S 5(s-sn)* IS A(s,x)exp (2rcis. x)dx 
n o o  

N °o 
= Nf2(s) , f_ooA(s,x) exp (2~ix. s -sn)dx,  (28) 

where • means the convolution integral of the quanti- 
ties at both sides of the sign. Furthermore we have 
to take the lattice points Xm such that 

(sin. Xm) = M = integer. (29) 

The above calculation of Ia(s) is possible because 
C'(x)(p'(x, Ax) varies rapidly with Ax and consequently 
A(s,x) varies slowly with s. 

When we evaluate the second term in equation (25), 
I~(s), we find that it behaves quite differently from 
Ia(s); I~(s) describes only a small angle effect: 

lb(S)={Nf2(s)/v} S exp(2nis, xra)I_ ~ {1-C'(xm)} 
m o o  

x U(Ax) exp (2~zis. Ax)d(Ax)= {NfZ(s)/v} 

x X m I~ooexp(2rcis.xra+Ax){1-C'(xm)}U(Ax)d(Ax) 

= {NfZ(s)/v} l~_oo {1-  C'(x)} exp (2~is. x)dx. (30) 

It is easily shown that the small angle effect that is 
described by the first term in the sum for Ia(s) in equa- 
tion (28) plus Ib(s) is a 0-function. 

Let us consider further the diffraction pattern from a 
crystalline material. It is possible to separate the dif- 
fraction pattern into single intensity distributions 
In(s-sn) [equation (11)] if In(s-sn) decreases suffi- 
ciently rapidly with Is-snl. Following equation (28) 
this means that A(s,x) must vary sufficiently slowly 
with x and hence C'(x) and the shape of ~0(x, Ax) must 
also change sufficiently slowly with x. These are just 
the conditions for ~(x) assumed in example (5), so the 
above restrictions on ~(x) may be assumed to apply 
when the diffraction pattern consists of separated 
(broadened) spots. 

It is important to realize that the condition (23) for 
qg'(xm, Ax) holds, to a good approximation, when the 
diffraction spots can be measured separately; the inten- 
sity distribution around the reciprocal lattice points 
sn-¢ O can then be described by 

In(s)= NfZ(s) I ~_ oo exp (2zcix . s-sn)dx 

Ioo C(x)qg(x, Ax) exp (2rcis. Ax)d(Ax). (31) × 

d - -  o o  

The functions C(x) and ~0(x, Ax) are equal to C'(x) and 
~0'(x, Ax) if the restrictions in example (5) apply. Equa- 
tion (31) expresses the proof that the intensity distribu- 
tion around the reciprocal lattice points sn # O from a 
distorted crystal depends on the quasiperiodic part 
of the average lattice function, described by 
C(x)~0(x, Ax). We may conclude that C(xm) is the frac- 
tion of unit cells that are at a distance x from another 
arbitrary unit cell in the structure, for those values of x 
such that [(X-Xm. e4)l<½]e4[ 2, and that contribute 
simultaneously to scattering. The same significance can 
be given to the form function V(xm) for a nearly per- 
fect crystal; in this sense it gives the same information 
about the crystal as in the original definition in terms 
of the displaced ghost. Thus C(x) cart be taken to be 
the form function of the coherently scattering region. 
It is now reasonable to propose the following defini- 
tion of the average coherently scattering region. 
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Definition of the average coherently scattering region 
The average coherently scattering region in a distor- 

ted crystal is the region that corresponds to a form 
function C(x). 

The special value C(xm) corresponds to the volume 
integral of ~(x)  under one peak around xm minus the 
volume integral of the monotonic part of ~(x)  for 
values of x such that [(X-Xm. ed[-<llei[2. Since V(x) 
and C(x) are equivalent in the above sense, the Bertaut 
(1950) analysis for thd particle size distribution func- 
tion can be applied in the same way to both C(x) and 
V(x). 

Let us now derive from equation (31) a formula 
that gives the intensity profile of a Debye-Scherrer 
line; this formula will also give the projection on to the 
direction of sn of a diffraction spot around sn. For this 
we resolve s: s = Sn + u + So, where u is perpendicular to 
sn and So is parallel to sn, and we take So = u  + So. 

We now resolve x: x = Xm + v + x0, where v is per- 
pendicular to Sn and x0 parallel to Sn, and we also take 
Ax=x0+v .  

Let us denote Ix0l by L, [Snl by Sn and Is0l by So. 
Then, since (Ax, s0) is small, 

(s. Ax)=snL. (32) 

We denote the projection of x along sn by t and its 
modulus by t. Then (u. t ) = 0  and (So. x)=s0t, such 
that 

(U+So. x )= (u ,  x - t ) + s 0 t .  (33) 

The projection of the intensity distribution on Sn that 
we wish to calculate is 

[n(So)= S~_ In(s)du. (34) 

We substitute equations (31), (32) and (33) in equation 
(34) and if at the same time we make the substitutions 

and 

the result is" 

C( t )=  I~oo C(x)dv (35) 

~o(t,L)= I~_ ~o(t,L,v)dv, (36) 

In(s°)=NfE(sn)S ~- ~o exp (2rciu. x -  t)dn 

x f_~ exp (2nisot)dx f~ooC(x)exp (2nisnL)dL 

× 

S x exp (2nisot)dt C(t)(o(t, L) exp (2nisnL)dL. 
o o  - - o o  

(37) 

In analogy with equation (23) we can say that 

~0(t,L)=O for ILl>½d (38) 

when the diffraction lines can be measured separately. 
In this sense equation (37) gives the intensity distribu- 
tion of a Debye-Scherrer line and at the same time it 
gives the projection on to the direction of Sn of the 
intensity distribution of a diffraction spot from a single 
crystal around Sn. 

In a previous paper (La Fleur & Koopmans, 1968) 
equations were derived that express ~o(t,L) and V(t) 
for the above conditions in terms of the Fourier coeffi- 
cients from the line profiles of Debye-Scherrer lines, 
A~"(t) and A~m(t), by use of equation (37). [A~,e(t) and 
A~m(t) are the real and imaginary parts of the Fourier 
coefficients from the line of the nth order.] However, 
in that equation V(t) was put instead of C(t). It is clear 
that here we may vary V(t) with C(t). The equations 
become: 

~0(t,L) = 1/d+{2/[dC(t)]} X [A,~e(t) cos (2rcnL/cO 
n = l  

+ A~m(t) sin (2gnL/d)] (39) 
and 

oo 

C( t )=2  Z (-1)n+lA~e(t). (40) 
n = l  

The projection of the average lattice function on to 
the perpendicular to the reflecting planes can be 
determined, in principle, with the aid of equations (19), 
(39) and (40). The standard deviation (L~) of ~o(t,L), 
the average value of L, (Lt) and the average of the 
modulus of L, ([Ltl) can be expressed as: 

co  

(L2t)=dZ/12-{d2/[rcEC(t)]} X (-1)n+aA~e(t)/n2; (41) 
n = l  

oo 

(Lt)= {d/[r~C(t)]} N ( -  1)n+aA~m(t)/n ; (42) 
n = l  

oo 

(ILtl)=d/4-{2d/[~rzc(t)]} £ A~+l(t)/(2n+ 1) 2. (43) 
n = 0  

Discussion 

We have introduced the average lattice function 9~(x) 
for a distorted crystalline material and we have given 
equations that express its projection, 9~(t), in terms 
of the Fourier coefficients of Debye-Scherrer lines, 
whenever the lines can be measured separately. As is 
shown in the paper by La Fleur & Koopmans (1968), 
for some hypothetical distribution functions ~o(t,L), 
the series in equation (40) is not always sufficiently 
convergent for practical application. This is especially 
the case when the distribution function, ~o(t,L), is a 
sharp function of L around the lattice points, i.e. nearly 
perfect crystals. 

The average lattice function might be characterized 
with the aid of the Warren & Averbach (1952) method 
which was devised for nearly perfect crystals. We have 
to investigate, therefore, the relation of C(t) to V(t) w 
obtained by the Warren & Averbach method. 
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The essence of this method is the insertion of distri- 
bution functions, ~o(t, L) w, in equation (37) of the form 

 o(t,L)w 
={2n(LZ(t))w}-l/2 exp {-LZ/2(LZ(t))w} ; (44) 

(LZ(t)) w are the strain coefficients obtained by the 
Warren & Averbach method. Following this method 
separated intensity profiles of the diffraction lines have 
to be measured. Therefore the substitution of func- 
tions like in equation (44) into equation (37) implies an 
inexactness since these functions do not satisfy the 
condition q~(t,L)=O for [Ll>_½d. However, for small 
(L2(t)) w values the inexactness is negligible. Let us 
investigate therefore to what extend functions of the 
form (44) are admissible. The projection of the average 
lattice function for the Warren & Averbach model, 
~(t)  w, is 

~ ( t ) w =  Z" V(tm)W{2zc(L2(tm))W} -1/z 
m 

×exp {-(t-tmZ/2(LE(tm))W}+{1 - V(tm) w} ( l /d ) .  

(45) 

It follows from equation (31) that we can determine 
the quasiperiodic part of ~(t)  w from the intensity 
profile of a Debye-Scherrer line; from equation (19) 
the area under one peak of this quasiperiodic part is 
equal to C(tm). The total area under ~(t)  w between 
tra-½d< L <tm +½d for the mth lattice point is unity. 
The contribution to that area from the monotonic 
part of the average lattice function is {1 - V(tm)} plus 
the area from the tails of the neighbouring gaussian 
distributions. Thus: 

l=c(tm)+(1-  v(t,.)w} 
oo 

+ 
n = O  

x I a/2 exp {-(L-t.-tm)2/Z(L2(t.)W)}dL 
d--d/2 

- 

l 
d/2 

x exp {-(L-tm)2/2(LZ(tm))W}dL. 
-d/2 

(46) 

This is illustrated in Fig.6. When V(tm) w and 
(L2(tm)) w are slowly varying functions of tm and the 
gaussian distributions are not too broad, equation (46) 
can be approximated by 

c(t ) = v(t,.){2(L2(tm))w}-l/2 

x exp {-LZ/2(LZ(tm))W}dL. 
go 

(47) 

For (L2(tm))W((¼d 2 equation (47) reduces to 

C(tm)= V(tm) w , (48) 

but the deviation of C(tm) from V(tm) w becomes more 
apparent as (LZ(tm)) w increases. A criterion could be 
(L2(tm))W < l/36d z. 

What are the consequences of (47) for the determina- 
tion of the average lattice function, and what does (47) 
signify for the Warren & Averbach method? The 
Warren & Averbach method can be used as an inde- 
pendent method, as long as (LZ(tm)) W satisfies the 
above criterion. 

However, it is clear from equation (47) that we have 
to be critical in the application of the Warren & Aver- 
bach method for large strain coefficients, even when 
the distribution functions are gaussian. 

In the case where the gaussian curves begin to over- 
lap each other the functions ~o(t,L) begin to look like 
the first period of (I/d) {1 +cos  (2~rL/d)}. To obtain a 
direct criterion we note that the first period of 
(l/d) {1 +cos  (2zcL/d)} gives (LZ)= 1/36d2; those func- 
tions with approximate form (I/d) {1 + cos (2rcL/d)} can 
be approximated very well by the first terms of a 
Fourier series, as in formula (39). Therefore it is ex- 
pected that an approximation of C(t) by a few terms 
of the series in equation (40) is quite reliable in the 
region where the Warren & Averbach method is pos- 
sibly no longer valid. 

In addition, it may be inferred that the coherently 
scattering regions are identical with definite crystals, 
from the fact that, from equation (47), C( t )=  V(t) W 
for all values of t, especially for large t. 

! I I 
~lt] I I 

I 

!j/2~lJ/zdJ. ,! t 
- 7 " :  

tn 
Fig.6. The average lattice function composed of gaussian curves. The dotted line is { l -  C(t)} ( l /d) ;  the thin continuous line is 

{1 - V(t)} (I/d).  The total area is 1, made up from the contributions from C(tn) ( / / / ) ,  {1 - V(tn)} ( \ \ \ )  and from the overlap of 
the gaussian curves ( ~ ) .  
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Conclusions 

When the intensity distribution of a diffraction pattern 
from a crystalline material can be measured as separate 
distributions around the reciprocal lattice points sn, 
the average lattice function ~(x) (a repartition func- 
tion) satisfies certain conditions. In this case ~(x) is 
the sum of a monotonic function of x and a quasi- 
periodic function. The quasiperiodic part of the 
average lattice function describes the intensity distribu- 
tion of the diffraction pattern. Therefore the form func- 
tion, C(xm), of the coherently scattering region equals 
the volume integral of the peak of the average lattice 
function around the ruth node of the average lattice, 
and the coherently scattering region may be defined as 
a region of matter corresponding to the form function 
C(x). This function C(xm) represents the fraction of 
unit cells in the structure around the ruth average 
lattice point xm that contribute to coherent scattering. 
In addition, a peak of the average lattice function can 
be described by C(xm)fp(Xm, AX), where rp(Xm, AX)=0 
for ](ei. Ax)l >_ ½levi 2. 

We can determine from a powder diffraction pattern 
the projections on to the perpendicular to the reflecting 
planes C(t) and ~o(t,L) of C(x) and q~(x, Ax), if the dif- 
fraction lines can be measured separately; in this case 

~o(t,L) can be set at zero for IL l - l d .  Thus equations 
derived in a previous paper by La Fleur & Koopmans 
(1968) can be used for the determination of C(t) when 
the convergence of the series in the given expression for 
C(t) is sufficiently rapid, that is, when the distortions 
are sufficiently great. The Warren & Averbach method 
implies a certain inexactness in this case, even when the 
distribution functions are gaussian. However, if the 
series in the given expression for C(t) does not converge 
sufficiently rapidly, i.e. the distortions are sufficiently 
small, it is justifiable to apply the Warren & Averbach 
method. 

The author is greatly indebted to Dr K. Koopmans 
for some valuable discussions on the subject of this 
paper. 
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G6n&alisation de la Notion de Champs d'Ondes en Th6orie Dynamique 

PAR F. BALIBAR 

Laboratoire de Mindralogie-Cristallographie, associd au CNRS, Facultd des Sciences, 9, quai Saint Bernard, 
Paris VOme, France 

(Recu le 21 mars 1969) 

Using Takagi's theory of X-ray diffraction by a perfect crystal and the general theory of differential 
equations, a solution of Takagi's equations is given in the form of a linear combination of two unit 
vectors of the vectorial space formed by the solutions of these equations. The amplitude distribution 
inside the crystal is then the sum of two terms, each term being the convolution of a function depending 
on the amplitude distribution on the incident surface and one of the two principal solutions of Takagi's 
equation which are Hankel functions of the first and second kind, Ho ~ and Ho 2. This gives an extension 
of the notion of wave fields since this calculation can be done for any kind of incident wave on the en- 
trance surface. It is shown that these two 'generalized wave fields' present anomalous absorption. In 
the case of an incident plane wave or an incident spherical wave, these 'generalized wave fields' become 
identical with the usual wave fields of the dynamical theory. 

1. Introduction 

Les d6veloppements de la th6orie dynamique des ray- 
ons X pour les cristaux parfaits ont conduit/t  intro- 
duire la notion de champ d'ondes. Darwin, Ewald 
(1917), puis gaue (1931, 1960) ont montr6 qu'une onde 
incidente plane de polarisation donn6e et de vecteur 

d'onde OM=K(o 'o donnait naissance /t l'int&ieur du 
cristal ~ quatre ondes group6es en deux champs 

d'ondes; chaque champ d'ondes est constitu6 par la 
superposition de deux ondes planes ~'h et ~0 ins6pa- 
rables, dont les vecteurs d'onde se d6duisent l'un de 
l'autre par translation du r6seau r6ciproque. Les vec- 
teurs d'onde Kj~ et K0 men6s des noeuds H et O du 
r~seau r6ciproque qui se trouvent sur la sphere d'Ewald, 
ont donc m~me extr~mit6 P; lorsque l'6cart /~ l'inci- 
dence de Bragg de l'onde plane incidente varie, P 
d6crit la surface de dispersion, surface ~t deux nappes. 


